
@berndruecker

Are you done yet?
Mastering
long-running processes
in modern architectures

Let‘s talk about food

How does ordering Pizza work?

Pizza
Place

You

Phone Call
Synchronous blocking communication
Feedback loop (ack, confirmation or rejection)
Temporal coupling (e.g. busy, not answering)

Pizza
Place

You

Email

Asynchronous non-blocking communication
No temporal coupling

Pizza
Place

You

A feedback loop might make sense
(ack, confirmation or rejection)

Email

Confirmation Email

@berndruecker

Feedback loop != result

Pizza
Place

You

Email

Confirmation Email

Pizza Delivery

Feedback (ACK, confirmation, rejection)

Result

@berndruecker

Only the first communication step is synchronous / blocking

Pizza
Place

You

PUT /order

HTTP 200

Pizza Delivery

The task of
Pizza making is
long running

@berndruecker

Synchronous blocking behavior for the result?

Bad user experience
Does not scale well

@berndruecker

Scalable Coffee Making
https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Photo by John Ingle

@berndruecker

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/

Long running

Long running

Long running basically means waiting

When do services want to wait? Some business reasons…

Human work Waiting for response

Let some time pass

Why is waiting a pain?

Persistent state How to solve the technical challenges without adding accidential
complexity?

Monitoring &
Operations

Visibility

Versioning
Scheduling &

Timeouts

Domain Logic
Scalability &
Resilience

Warning:
Contains Opinion

bernd.ruecker@camunda.com
@berndruecker
http://berndruecker.io/

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

http://berndruecker.io/

Workflow Engine aka Process Engine aka Orchestration Engine

Live hacking

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

Customer Onboarding

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

Scaling infinitely

https://page.camunda.com/wb-zeebe-performance-engine

There are also technical reasons
why services need to wait…

When do services need to wait? Some technical reasons…

Asynchronous communication

Wait for
responses

Wait for
availability

Especially failure scenarios

Unavailability of peers

Photo by Tookapic, available under Creative Commons CC0 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/

„There was an error
while sending your

boarding pass“

Check-in

Web-UI

Me

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Failure will happen.
Accept it!

But keep it local!
Be resilient.

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Stateful
Retry

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Stateful
Retry

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Stateful
Retry

Possible situation – much better!

The failure
never leaves
this scope!

A long running process to check-in

„But the customer wants a synchronous response!“

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

„Eh – no!“

performCheckIn

HTTP 200 OK

HTTP 202 ACCEPTED

Check-In

Happy case: Synchronous response
Otherwise: asynchronous

Embrace asynchronicity

Adding timeouts and alternative paths

Advanced workflow patterns using BPMN

Compensation*

@berndruecker

Graphical models?

@berndruecker

Living documentation for long-running behaviour

@berndruecker

Living documentation for long-running behaviour

@berndruecker

BizDevOps

@berndruecker

Decisions about
long running behavior
need to be elevated
to the business level

Long running capabilities
are essential to design
good service boundaries

(= a good architecture)

@berndruecker

Example

Booking Payment

Retrieve
Payment

@berndruecker

Example

Booking Payment
Credit
Card

Retrieve
Payment

@berndruecker

Example

Booking Payment
Credit
Card

Retrieve
Payment

Rejected

@berndruecker

Example

Booking Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker

???

Payment
failed

Who is responsible to deal with problems?

Booking Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker

Payment
failed

(Potentially) long running services

Booking Payment
Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker

Long running services

Booking Payment
Credit
Card

@berndruecker

Orchestration != monolithic processes

Booking Payment
Credit
Card

@berndruecker

You need a
process orchestration capability
that is available as-a-service
within your organization
to create competitive architectures

Ubiquitous Process Orchestration

Center of excellence can enable and provide a platform

Business Unit

or Domain

Business Unit

or Domain

Business Unit

or Domain

Process Automation

Center of Excellence

Solution

Delivery

Solution

Delivery
Solution

Delivery

Solution

Delivery

Solution

Delivery

enable

But isn’t a central CoE
harming
team autonomy?

(This is a rhetorical question - the answer is of course NO)

Center of
Excellence

Domain

Golden Paths

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

“We found that
rumour-driven development
simply wasn’t scalable”

@berndruecker

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

https://backstage.io/ (OSS, Made with at Spotify) @berndruecker

https://backstage.io/
https://spotify.github.io/

Recap

• You need capabilities for long running behavior for technical and
business reasons

• Process orchestration platforms / workflow engines are a great fit
• This allows you to design better service boundaries, remove accidental

complexity, implement quicker, and provide a better customer
experience

• Organize central enablement (center of excellence, platform as-a-
service) for easy adoption at scale

@berndruecker

Want to learn more?

http://camunda.com/

http://camunda.com/

https://www.berndruecker.io/ | bernd.ruecker@camunda.com

https://www.berndruecker.io/

	Default Section
	Slide 1: Are you done yet? Mastering long-running processes in modern architectures

	Basics
	Slide 2: Let‘s talk about food
	Slide 3: How does ordering Pizza work?
	Slide 4: Feedback loop != result
	Slide 5: Only the first communication step is synchronous / blocking
	Slide 6: Synchronous blocking behavior for the result?
	Slide 7: Scalable Coffee Making
	Slide 8: Long running
	Slide 9: Long running
	Slide 10: Long running basically means waiting

	Long Running for Business
	Slide 11: When do services want to wait? Some business reasons…
	Slide 12: Why is waiting a pain?
	Slide 13: Warning: Contains Opinion
	Slide 14: Bernd Ruecker Co-founder and Chief Technologist of Camunda
	Slide 15
	Slide 16: Live hacking
	Slide 17: Customer Onboarding
	Slide 20: Scaling infinitely

	Long Running for Technical Reasons
	Slide 21: There are also technical reasons why services need to wait…
	Slide 22: When do services need to wait? Some technical reasons…
	Slide 23
	Slide 24
	Slide 25: Current situation
	Slide 26: Current situation
	Slide 27: Current situation
	Slide 28
	Slide 29: Current situation – the bad part
	Slide 30: Current situation – the bad part
	Slide 31: Current situation – the bad part
	Slide 32
	Slide 33: Possible situation – much better!
	Slide 34: Possible situation – much better!
	Slide 35: Possible situation – much better!
	Slide 36: A long running process to check-in
	Slide 37: „But the customer wants a synchronous response!“
	Slide 38: Embrace asynchronicity
	Slide 39: Adding timeouts and alternative paths
	Slide 40: Advanced workflow patterns using BPMN
	Slide 41: Graphical models?
	Slide 42: Living documentation for long-running behaviour
	Slide 43: Living documentation for long-running behaviour
	Slide 44: BizDevOps
	Slide 45
	Slide 46

	You need long running capabilities
	Slide 47: Long running capabilities are essential to design good service boundaries (= a good architecture)
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Who is responsible to deal with problems?
	Slide 53: (Potentially) long running services
	Slide 54: Long running services
	Slide 55: Orchestration != monolithic processes
	Slide 60: You need a process orchestration capability that is available as-a-service within your organization to create competitive architectures
	Slide 61: Center of excellence can enable and provide a platform
	Slide 62: But isn’t a central CoE harming team autonomy?
	Slide 63
	Slide 64: Golden Paths
	Slide 65

	Closing
	Slide 67: Recap
	Slide 68: Want to learn more?
	Slide 69

