Loosely or Lousily (oupleo\?

Vno\evd’o\mo\imq
(ommunication Patterns in
Microservices Architectures

Let’s talk about {ooo\

@berndruecker

How does oro\erivw) Pizza work?

Email
o 4 |

Email

d [

Pizza
Place

(onfirmation Email

@berndruecker

Feedback loop I= result

Email
| 4 [

(onfirmation Email
You ¢ Pizza Feedback (ACK, confirmation, rejection)

Place

Pizza Delivery

< Result

@berndruecker

only the first communication step is synchronous / blockimg

Pac The fask of

-‘ Pizza making iy
v

lonq mvw\ing

O e
5 o - -—
Pizza Delivery

@berndruecker

Synchronous blocking behavior for the result?

Bad user experience

Does not scale well

vy |
@berndruecker
PROTEN DU

]

TS
x

(calable (o{{e MﬂiI;q

https://

www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

—_ - e
2 ‘. v’:‘ _}' . oS B
Photo by John Ingle

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/

|

» BE AN |

Long running baslcally means wm’fmg

he o Serv 7 Some business reasons

i \ 3 5
~ ‘ ﬁJ:
_— = .m e ay 2 A

Human work Waiting for response

Let some time pass

Why i waiﬁmg a pain?

Monitoring & Scheduling &
w Operations Timeouts

Scalability &

Visibility Domain Logic Resilience

Pey“ﬂ' ey\‘l’ S‘l’ ﬂ+ e How to Solve the technical challenges without adding accidential
(omplexi‘l’y?

order REST
Fulfillment ' Payment

~ Scheduler to
Cramence | amain— s RN

oncess open
1 100 $ Collected \
2 125 %) Open
Dang it — we {SCViP+}

need a datel

Paymevd's

Fixing open
payments

<I>

Keporﬁng o{

overdue payments

OREILLY

Practical
Process
Automati

el "f?%é 3

Bernd Ruecker

(o-founder and
Chief Technologis’r o}
(ﬂW\IAV\dM Jakob Freund and Bernd Ricker

REAL-LIFE

BPMN

Includes an introduction to DMN

bernd.ruecker@camunda.com
@berndruecker
http://berndruecker.io/

Analyze, improve and automate your business processes

CAMUNDA

http://berndruecker.io/

OREILLY

Practical
Process 7
Automation

Orchestration and Integration in Microservices

Workflow engine

@ e : Bernd Ruecker
Ao | Ll

Version 1

Process definitions Durable state

Workflow Engine aka Process Engine aka Oxchestration Engine

Building a pizza ordering app

PUT /order
> Pizza Delivery
PR ——— System
HTTP 2oo0:

2bot your order. Should
be delievered in Yough(g
41 minutes.”

@berndruecker

@berndruecker

(ommand v§. event-based communication

| order this pizza
o A _

oK — got it

You <& Pizza
Place

»Hey — 1 am hungry!”
@ g

You Pizza
Place

@berndruecker

De{imiﬁoms

Someﬂ\inq happened in the past. It is a [act.

Sender does not know who picks up the event.

(ommand fender wants §.th. fo happen. It hag an intent.

Kecipievﬂ’ does not know who issued the command.

(ome pre{ev reques{' over cOmmand

(ommunication options — Quick Summary

Communication Synchronous Asynchronous
Style Blocking Non-Blocking
Collaboration Command-Driven Event-Driven
Style

Messaging Messaging
Example REST (Queues) (Topics)
Feedback Loop HTTP Response)

Response Message

Pizza Ordering via Phone Call E-Mail Twitter

7

@berndruecker

This is not the

samel

&>

s

Events vs. (bmmavw\s

Er fn E

»Pizza Salmon

i§ ready!”
J

ey
=

-

. o |
R,

‘_‘\.

ndruecker

@berndruecker

Example: Build a pizza orderina app uing events
Hey — somebody

ordered

PUT /order

>

Pizza Delivery
HTTP 200:

wbot your order. Should ; . .

be delievered in Yough(y Hey = PlZZﬂ 1

41 minutes.”

| have a Pizza Veady

{ov you

PUT /order

>

‘---------

HTTP 200:
wbot your order. Should
be delievered in roughly
41 minutes.”

Hey — sow\eboo\g

ordered

Pizza Delivery

Syd’em

| have a Pizza

{or you

L

@berndruecker

Hey — Pizza 1§
Veo\dy

Example: Build a pizza ordering app via orchestration

PUT /order
S
Pizza Delwevy -,
_________ System Y
HTTP 200:
wbot your order. Should
be delievered in ro WJh(g
41 minutes.”
O

But how to implement é@
long-running things?

@berndruecker

A process for the Pizza ovo\evimj 39s+em

™~
{%} {’r@, Wait for Pizza to
Inform customer Bake Pizza be picked up for
about delivery delivery
time

Estimate
delivery time

Pizza
ordered

Pickup time
expired

Wait for delivery
confirmation

Check Pizza
delivery

@berndruecker

Pizza
delivered

@berndruecker

Pizza xy was Picked Driver z handed over

YOM aAn Shu WOYk W‘+h BVCWl'S up by driver z Pizza successfully

a ™
Pizza
&'ﬂ EI : IZI delivered
Wait for Pizza to . ‘
orm customer Bake Pizza be picked up for Wait for delivery
Estlmate . confirmation
about delivery delivery
delivery time
time
Pizza
ordered
\ /i J

Pickup time

expired Check Pizza
delivery

@berndruecker

Advam’raneS

B Visibilﬂ’y: His{’ovg and

Long running: Wai{'ing

Visi’oilH’y: What's the
for events to happen

current status?

audit trail - -
™ Pizza
% %t for Pizza to Et for delivery delvered
O Inform O Bake Pizza be picked up for :;t:“f e
customer about delivery —.{ '
delivery time
Pizza
ordered
" 'f."fr \\w J
Details View \\CF;D”
N

Flow Node Instance Id Pickup time
heck Pizza

Time-out hano\linq delivery
/ escalation

Start Date
2022-05-30 15:26:54
End Date

2022-05-30 15:28:02

Developev-{rieno\ly

Your code to provide a REST endpoint WOYk{'lOW eV\qW\eS

@PutMapping("/pizza-order")

public ResponseEntity<PizzaOrderResponse pizzaOrderReceived(...) {
HashMap<String, Object> variables = new HashMap<String, Object>();
variables.put("orderId", orderlId);

Developers

ProcessInstanceEvent processInstance = camunda.newCreateInstanceCommand() n n
bpmnProcessId("pizza-order")

.latestVersion() 0 o
.variables(variables)
.send().join();
return ResponseEntity.status(HttpStatus.ACCEPTED).build();
} Process
Automation

=
) Walt for Pizza to e
1Fform customer Bake Pizza be picked up for Wait for delivery
Estimate o - confirmation
about delivery
delivery time K
time

Pickup time
expired

@berndruecker

@berndruecker

orchestration vs. Choreography

@berndruecker

Definition

orchestration command-driven communication

OREILLY

Choreography event-driven communication g:ggggg

Automat n

Orchestra nd Integ t
|U Cé Natw itectul

@berndruecker

Let’s switch examples: order fulfillment

order
II!!!!II

7z~ ~
(’C:heckout\
~ /

-_—

@berndruecker

Event chaing

. -~
(’C:heckout \
V4

N o

@berndruecker

The danger is that it's very easy fo make
nicely decoupled systems with event
notification, without realizing that you're
loging Sight of that larger-scale tHow, and
thus set yourself up for trouble in future

9ea¥$-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing Sight of that larger-scale fHow, and
thus set yourself up for trouble in future

9ea¥$-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
loging Sight of that larger-scale tHow, and
thus set yourself up for trouble in [uture

9eav8-

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

Peer—+o—Peev event chains

order
placed

7z~ ~
(’C:heckout\
~ /

@berndruecker

Fetch the goods
before the
payment

@berndruecker

Fetch the goods

before the
' \7 "

Peer—+o—Peev event chaing O

order
placed

%>
Checkout\
N P, = (7
. Tt €
& w e
— 4}/ bl N ..“‘
P —
\ [. A Y

- \ Shipment

I Payment -

)
Po\ymevd' - shipped
received

éoods
etched

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Pinball Machine Architecture

~7 N
(Checkout)
N o -
o™ ~ I’ -~ N
[4 Payment] ™~ \ Shlpment/
- (| S -
~ \ nventory/
~ -

-

~

(Notification

~

_—

-

\

@berndruecker

@berndruecker

https://twitter.com/berndruecker/

@berndruecker

What we wanted

,
0 b >
RS = ¥
_f
Al
yE 2

il

=

= '

Photo by Lijian Zhang,. available under Creative Commons SA 2.0 License and Pb19 / CC BY-SA 4.0

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

@berndruecker

Using orchestration and choveoqmpky

This 1§
choreography order
YR placed
Checkout ~ ~
(\ _ Order S
Thic - FquiIImerEl
191 .
X Retrieve
orchestration aument
o, ™~ I’ -~ \
/ payment Payment \ Shipmentl
\ received) W

-~

@berndruecker

(ollaboration style i§ independant of communication style

(koreoqmphy
’ |
(Checkout ~ ~ N
~ _ Order
- Fulfillment /

orchestration

!

Send command: Send command: Send command: Send event:

retrieve payment fetch goods ship goods order delivered

-~ ~
(Checkout\ TN

ﬁ Order ‘

~ - Fulfillment
I’ /7
o™~ I/ ~ \
/4 Payment] ™~ \ Shlpment/
\ () W
-~ \ Inventory

~ -

@berndruecker

it i easy to change the process How

o

Send command:
retrieve payment

Send command: Send command:

fetch goods ship goods

Send command:
retrieve payment

received

Send command:
fetch goods

Goods
fetched

Send event:
order delivered

Send command:
Ship goods

Goods
shipped

@berndruecker

Order
delivered

A
(omman
e:

(haue:«?\o\ v§. Event

(omm

v$

Event

[Melsnge pecord 7 Event

T | |

Event (ommand Query

Fact, Intend,
happened in the past, Want §.th. to happen,
immutable The intention itself i a fact

/
\

-

N\

|

-y, -

TN
EVGV\'l')

f/
_—

(ommand

Quevy

(ommands in o\isquise

Woro\imq o](
recipient '\

The (ustomer Needs To Be
fent A Message To (onfirm
Address (hange

Event

-
-—’

-
-
y e \

\

1
Wovding o]l
(ender

Direction of dependency

order Retrieve
placed Payment
E Checkout j 4’{ order E Payment j
Payment
received

Event-driven: K‘ Command-driven

Decision to couple i§ on the receivim’ Side Decision to couple i§ on the Sem\ing side
< — —

Direction o} Aepemo\emc9

(ustomer omboaro\imq

Order accepted?
© &

Approve
Score customer PP

customer order

Customer order
received

Customer order
rejected

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

Create
customer order
in CRM system

Customer order
processed

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

@berndruecker

Loyalty points bank

Publishes Customer created Subscribes

Post service
event

Building
l\/Licrosenfice_s

Customer service Email service

Sam Newman: Building Microservices T samiewman

Mix orchestration and choveoqmphy

@berndruecker

Customer Onboarding

"

(] 1 ot ~ ~
Send "check Wait for ") " , Send "send Publish
. " Send "check Wait for "credit " "
address address w " Create customer welcome letter customer
N J credit" command checked" event o
command checked" event | | | command created" event
Registration | o~ i ~ | ~ Customer
requested i \/ [lx | i \/ 4‘ i created
\ J J *
SR L‘_‘_‘_""_-l-_"_f ‘‘‘‘‘‘‘ P VO L T - N|
—

(horeoqmpky

orchestration

Address Check

Credit Check

orchestration

Loyalty Points

orchestration

Notification Service (including Email)

Want to learn more about choreography vs. orchestration?

http://berndruecker.io

OREILLY

Practical _

Process ‘M Balancing
(horeogmphy &
orchestration
Dberndruecker

Bernd Ruecker

https://processautomationbook.com/

https://processautomationbook.com/
http://berndruecker.io/

@berndruecker

Processes are domain logic and live V\sio\e service boundariey

- =

A

[Checkout)] T~
S N { oOrder \
~

[—

\ ,___-\ ,-—'l-\
(Payment) P\ fShipment’

S =7 [Inventory]
N -’

—

b I

orchestration is not centralized — Pan§ operations mqu’ be

Every microservice (process solution) owns its process model, glue code, and any additional artifacts

Microservice A Microservice B Microservice (

orchestration orchestration orchestration ldeally San§
Engine Engine Engine (probably self-managed)

Example: Sel{-—&evvice control Plome

G Console Clusters Modeler

Clusters

Name

1.3.1 Patch Release

Version 1.3.2 tests

Simon-Bernd G3-L Test

New_cluster_Geetha

QA Optimize Test3

Menski - Deleting Stuff

Acess-api-aut-test-feb

Region

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Integration Worker

Generation

Zeebe 1.3

- update available

Zeebe 1.3.2 - update available

Zeebe 8.0.0 - update available

Zeebe 1.2.2 - update available

Zeebe 1.2.2 - update available

Zeebe 8.0.0 - update available

Zeebe SNAPSHOT

o Bernd Ruecker v

Create New Cluster

Status

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy v

& berndruecker / flowing-retail ' pusic R Unpin | @ Unwatch 116

<> Code (O Issues 6 11 Pull requests 14 Q) Discussions () Actions [Projects [0 Wiki
(ome code!

¥ master -

% Fork 420 Starred 1.2k

@ Security 56 [+ Insights
flowing-retail / kafka / java / Go to file Add file -
gj berndruecker Added payment microservice alternative using Zeebe (related to #73)

27bceee 7 daysago (Y History
[READMEmd

adjusted readme to latest version/ports

M pomxml added build for event ingestion to Cl

= READMEmd

Flowing Retail / Apache Kafka / Java

This folder contains services written in Java that connect to Apache Kafka as means of communication between the services.
Tech stack:

e Java g

e Spring Boot 2.6.x

» Apache Kafka (and Spring Kafka)

« Camunda Zcebe 8.x (and Spring Zecbe)

Available
- Java

Available:

= Java

Available
- Java + (amunda
- Java + Zeebe

Available

- Java + (amunda

Available

- Java

Available:
- Java

https://github.com/berndruecker/flowing-retail/tree/master/kafka

https://github.com/berndruecker/flowing-retail/tree/master/kafka

Let’s talk about long running...

Example

Retrieve
~ |IIIIII| . o™~ o™~
Payment N _>[Credit M

(Ful(?|TI(jnignt/ / Payment /J y \ Card [/
-_— ~ —_ ~

@berndruecker

Example

Retrieve
~ n . o™~ o™~
Payment N _>[Credit M

(FuI(%TI(jnignt/ / Payment /J y \ Card [/
-— D - -~y -

Kejed’ed

@berndruecker

Example

Ke’meve
(Order Pa ment ’ J
FuIﬂIIment ¢ Card
/ ted ~ - S~ -
Rejecte . If the credit
Ke}""}fed card was

rejected, the

customer can

provide new
details

AlA

@berndruecker

Who i responsible?

Retrieve '
s n , o™~ o™~
Payment N _>[Credit M

(Order / Payment
Fulflllment/ < \y . ! < \ \Card _ J

) - If the credit
Ke)eded card was
rejected, the
customer can

provide new
details

AlA

@berndruecker

Lonq mmmimq (ervice$

Ke’meve
> - -~
Order Payment [f Credit N
Fulflllment Payment , Card /
/ < P R— \ ar
-~ ~ -

Payment

Kejed’ed

received jment

@berndruecker

Lonq Vuvw\imq (ervice$

\ -~ - — oy,
> —l
Order / { Credit
Fulflllment/ - \ Payment) \ Card /
-— - b J— -

@berndruecker

Long Running Services Allow More Flexible Changes

Charge credit
card
Payment retrieval

requested

@berndruecker

Long Running Services Allow More Flexible Changes

Deduct existing . Charge credit l
customer credit card

Payment retrieval
requested Payment
complete?

Payment received

@berndruecker

@berndruecker

Being able to implement
[long running services

= makes it easy to distribute
- Vespomsibili’ries cowed’ly

@berndruecker

Being able to implement
S lomq mvw\img (ervices

°V<he;+mﬁ0“

g makes it easy fo embrace
aSync/ mom—blockimq

—

When do services need to wait? Some technical reasons...

Asynchronous communication Especially failure scenarios
SR <« W) «--- -

Unavailability of peers

Wait for .
availabili’ry I I

ey o
miEd

:

: 1
~7 == == —— \X= m

Photo by Tookapic, available under Creative Commons CCO 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/

7 ,sThere was an error

. /4 . .

Eurowings while sending your
boarding pass”

Home * Mein Flug: My Eurowings » Bordkarten anzeigen + Meine B

| h re B O rd kart e n den der Bordkarte ist ein Fehler aufgetreten.

Ihr Buchungscode O08HHSS
Hinflug

BERND RUECKER Stuttgart (STR) -

~

London-Stansted (STN)

(urrent situation

\
~ \,—\

l checkin
eckK-In
\ J

~ e

Me

(urrent situation

— / Web-UI

_,’\
o~

Me / N
Check-in)
1T \
L
- -~ N [Barcode S
f Output Generator /
\
\ Mgmt J -~ -

~

(urrent situation

~ T~

— / Web-UI

_,’\
o~

Me ; N
Check-in)

rSsome
ervice
\ Z Z'_ o
Msome N But keep it locall
)) \ Service / .
Failure will happen. -~_ - Be resilient.

Accepf it Ksote N
\ Service /

~

(urrent situation — the bad part

~ T~

— / Web-UI

_,’\
s~

\
Me I Check-in ,
[4 Barcode S
/ Output S \ Generator /
\ Mgmt J ~

~ e

(urrent situation — the bad part

—

~
& .
4 s
~- ~ S
/ S hOS
—> \ Web-UI) \\
~ - N
- \
Me ’ Check-in ,
3
[4 Barcode S
/ Output S \ Generator /
\ Mgmt J ~

~ e

(urrent situation — the bad Pm’r

\/
R

I Check-in

f Barcode S

4 Output N \ Generator /

\ I\/Igmt/l ~_ <
S

Stateful
Retry

. 4
Eurowings Buchen | Mein Flug

Home * Mein Flug: My Eurowings » Bordkarten anzeigen

lhre B

Ihr Buchur
Hinflug

BERND RUEC

We are having some technical difficulties at the moment.

Please log on again via www easyjet.com
If that doesn't work, please try again in five minutes.

We do actively monitor our site and will be working to
resolve the issue, so there's no need to call

We are havinq some technical
ditliculties and cannot present you
your 'ooaro\ing pass ria)H away.

But we do actively retry ourselves, so

lean back, relax and we will send it
on time.

Possible situation — much better!

~ T~

—> / Web-UI

_,’\
’—\

\
Ve I Check-in I
[4 Barcode S
4 Output S \ Generator /
\ Mgmt / ~_ -

~ —

Possible situation — much better!

~ T~
— I\ Web-UI)
-~ Stateful
\ - - Retry
Me
I Check-in
[4 Barcode S
4 Output S \ Generator /
\ Mgmt J ~_ -

~ e

Possible situation — much better!

- =
—> [webul
~_ - Stateful .
_ - Retry The {ailure
Me l Checkin y never leaves

V. - this scopel

~ T~

f Barcode N
Generator [/
N -

ynBut the customer wants a synchronous response!”

/"'~\
—VI\Web-Ul),
~ e

\Y[S ; N
Check-in)
Ve L - \
,Eh — no!l” | SR
’O \ f Barcode
f Output \ Generator /
\ Mgmt / -~ ~

~ e ™

Syn(hronous communication

Todd Montgomery and Martin Thompson
in “How did we end up here” at GoTo (hicago 2015

Symchranous communication
1§ The crystal meth of
distributed programming

Todd Montgomery and Martin Thompson
in “How did we end up here” at GoTo (hicago 2015

@berndruecker

Messaging?

Vsimg mesmqimg

-~ Dead letter queue
¢ | Credit M (VL)
\ Card /

~

Vsimg meSSaqu\g

Wait for credit
card response

Resend credit
card charge
command

~y
¢ | credit M
\ Card /

~

Dead letter queue

)

=

Filters €

3

versanz

Reset Filters

@D Fitters

Flight registration

Instances
Workflow v
® Fight registration
® Flight registration
® Fight registration

® Flight re;

® Flight registration

® Flight registration

Instanca 1d

5099

Version

Wersion 2

Vorsion 2

Version 2

Vorsion 2

<Mz/3 als

Start Tima

ar 2019 170851

3 ADr 2019 17:08:51

2 Apr 2019 17:08:553

3 Apr 201917-08:54

3 ADr 2019 17:08:55

2 Agr 2019 17:08:55

1

Trial License ~

Actions
@

@
fe
2
ne
2e

Seloctions @

Patterns To Survive Remote (ommunication

Service
Consumer

Pattern/Concept

Service Discovery
Circuit Breaker

Bulkhead

Load Balancing

Retry

ldempotency

De-duplication

Back Pressure & Rate Limiting
Await feedback

Sagas

Service

Use With Provider

Sync

Sync

Sync

Sync
Sync / Async
Sync / Async
Async
Sync / (Async)
Async
Sync / Async

@berndruecker

, available under 2

https://pixabay.com/de/schutzschalter-fi-schalter-1167327/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Circuit Breaker

You

PUT /order

Address

(Check

Paymevd’

@berndruecker

connection |
problem

timeout!

A

- - timeout! |

timeout! ;
trip

-« — — —
circuit open! |

from https://martinfowler.com/bliki/CircuitBreaker.html

https://martinfowler.com/bliki/CircuitBreaker.html

@berndruecker

Circuit Breaker

e.g. Resilience4J:

@CircuitBreaker(name = BACKEND, fallbackMethod =
"fallback™)

. public boolean addressValid(Address a) {

return httpEndpoint.GET(...);

PUT /order Address }
. Check
private boolean fallback(Address a) {
You return true;
| }
Payment
resilience4j.circuitbreaker:
instances:
BACKEND:

registerHealthIndicator: true
slidingWindowSize: 100
permittedNumberOfCallsInHalfOpenState: 3
minimumNumberOfCalls: 20
waitDurationInOpenState: 50s
failureRateThreshold: 50

Patterns To Survive Remote (ommunication

Service
Consumer

Pattern/Concept

Service Discovery
Circuit Breaker

Bulkhead

Load Balancing

Retry

ldempotency

De-duplication

Back Pressure & Rate Limiting
Await feedback

Sagas

Service

Use With Provider

Sync

Sync

Sync

Sync
Sync / Async
Sync / Async
Async
Sync / (Async)
Async
Sync / Async

@berndruecker

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Description Example

Service knows internals of
other services

Joined database

Service depends on
availability of other
services

Synchronous blocking
communication

Multiple services can only Release train

be deployed together

Recommendation

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Description Example

Service knows internals of
other services

Joined database

Service depends on
availability of other
services

Synchronous blocking
communication

Multiple services can only Release train

be deployed together

Recommendation

Typically avoid, but
depends

Types of Coupling

@berndruecker

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Domain Coupling

Description

Service knows internals of
other services

Service depends on
availability of other
services

Multiple services can only
be deployed together

Business capabilities
require multiple services

Example

Joined database

Synchronous blocking
communication

Release train

Order fulfillment requires
payment, inventory and

shipping

Recommendation

Typically avoid, but
depends

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of Joined database
other services

Temporal Coupling Service depends on Synchronous blocking
availability of other communication
services

Deployment Coupling Multiple services can only Release train Typically avoid, but
be deployed together depends

Domain Coupling Business capabilities Order fulfillment requires unless you

require multiple services payment, inventory and

Mk change business
shipping

requirements or service
boundaries

Type of coupling

Implementation Coupling

Temporal Coupling

Deployment Coupling

Domain Coupling

Recommendation

Typically avoid, but
depends

unless you
change business
requirements or service
boundaries

The communication siyle can reduce +empoml
coupﬁnq

Some people say that event-driven systems decouple
better. But in reali‘fy, it jus+ turng the direction of
the dependency around.

The collaboration style does not decouple!

@berndruecker

Summary

* Know
* communication styles (sync/ async)
e collaboration s’(yles (command /event)

You can get rid o} temporal coupling with asynchronous communication
* Make sure you or your team can handle it

* You will need long running capabili‘l’ies (9ou migH’ need it amyway)
* Synchronous communication + correct patterns might also be 0K

Domain coupling does not go away!
* Design boundaries fo limit coupling (high cohesion within boundaries)

Long running co\po\biliﬁes help to distribute responsibili’fies correc’(ly

O'REILLY

Want To Know More? Practical

Process]
Automation

Orchestration and Integration in Microservices
. and Cloud Native Architectures

https://berndruecker.io/ https://camunda.com/

Bernd Ruecker Home Aboutme Mybooks My talks

Bernd Ruecker

https://berndruecker.io/
https://camunda.com/

W

Thank you!

Contact: bernd.ruecker@camunda.com
@berndruecker

Slides: https://berndruecker.io

Blog: https://blog.bernd-ruecker.com/

Code: https://github.com/berndruecker

OREILLY

Practical
Process Pzl
Automation

mailto:bernd.ruecker@camunda.com
https://berndruecker.io/
https://blog.bernd-ruecker.com/
https://github.com/berndruecker

	Standardabschnitt
	Slide 1: Loosely or Lousily Coupled? Understanding Communication Patterns in Microservices Architectures

	tart
	Slide 2: Let‘s talk about food
	Slide 3: How does ordering Pizza work?
	Slide 4: Feedback loop != result
	Slide 5: Only the first communication step is synchronous / blocking
	Slide 7: Synchronous blocking behavior for the result?
	Slide 8: Scalable Coffee Making
	Slide 9: Long running
	Slide 10: Long running
	Slide 11: Long running basically means waiting
	Slide 12: When do services want to wait? Some business reasons…
	Slide 13: Why is waiting a pain?
	Slide 14
	Slide 15: Warning: Contains Opinion
	Slide 16: Bernd Ruecker Co-founder and Chief Technologist of Camunda
	Slide 17
	Slide 18: Building a pizza ordering app
	Slide 20: Command vs. event-based communication
	Slide 21: Definitions
	Slide 22: Communication Options – Quick Summary
	Slide 23: Events vs. Commands
	Slide 24
	Slide 25: Example: Build a pizza ordering app using events
	Slide 26: Example: Build a pizza ordering app using events
	Slide 29: Example: Build a pizza ordering app via orchestration
	Slide 30: A process for the Pizza ordering system
	Slide 31: You can still work with events
	Slide 32: Advantages
	Slide 33

	Orchestration vs. Choreography
	Slide 34: Orchestration vs. Choreography
	Slide 35: Definition
	Slide 36: Let‘s switch examples: Order fulfillment
	Slide 37: Event chains
	Slide 38: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 39: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 40: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 41: Peer-to-peer event chains
	Slide 42: Peer-to-peer event chains
	Slide 43
	Slide 44: Pinball Machine Architecture
	Slide 45: What we wanted
	Slide 46: Using orchestration and choreography
	Slide 47: Collaboration style is independant of communication style
	Slide 48
	Slide 49: Now it is easy to change the process flow
	Slide 50: Challenge: Command vs. Event
	Slide 51
	Slide 52
	Slide 53: Commands in disguise
	Slide 54: Direction of dependency
	Slide 55: Customer onboarding
	Slide 56
	Slide 57: Mix orchestration and choreography
	Slide 58: Want to learn more about choreography vs. orchestration?
	Slide 60: An orchestrator?
	Slide 61: Processes are domain logic and live inside service boundaries
	Slide 62: Orchestration is not centralized – PaaS operations might be
	Slide 63: Example: Self-service control plane
	Slide 66: Some code?

	Long Running
	Slide 70: Let’s talk about long running…
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Who is responsible?
	Slide 75: Long running services
	Slide 76: Long running services
	Slide 77: Long Running Services Allow More Flexible Changes
	Slide 78: Long Running Services Allow More Flexible Changes
	Slide 79: Being able to implement long running services makes it easy to distribute responsibilities correctly
	Slide 80: Being able to implement long running services makes it easy to embrace async/non-blocking
	Slide 81: When do services need to wait? Some technical reasons…
	Slide 83
	Slide 84
	Slide 85: Current situation
	Slide 86: Current situation
	Slide 87: Current situation
	Slide 88
	Slide 89: Current situation – the bad part
	Slide 90: Current situation – the bad part
	Slide 91: Current situation – the bad part
	Slide 92
	Slide 93
	Slide 94: Possible situation – much better!
	Slide 95: Possible situation – much better!
	Slide 96: Possible situation – much better!
	Slide 97: „But the customer wants a synchronous response!“

	Sync/Async hands-on problems
	Slide 98: Synchronous communication
	Slide 99: Synchronous communication is the crystal meth of distributed programming
	Slide 100: Messaging?
	Slide 101: Using messaging
	Slide 102: Using messaging
	Slide 103: Patterns To Survive Remote Communication
	Slide 104
	Slide 105: Circuit Breaker
	Slide 106: Circuit Breaker
	Slide 111: Patterns To Survive Remote Communication
	Slide 113: Coupling
	Slide 114: Types of Coupling
	Slide 115: Types of Coupling
	Slide 116: Types of Coupling
	Slide 117: Types of Coupling
	Slide 118: Types of Coupling
	Slide 119: Types of Coupling
	Slide 120: Types of Coupling
	Slide 121: Types of Coupling
	Slide 122
	Slide 125: Summary
	Slide 127: Want To Know More?
	Slide 128
	Slide 129: bernd.ruecker@camunda.com @berndruecker https://berndruecker.io https://blog.bernd-ruecker.com/ https://github.com/berndruecker

