
Loosely or Lousily Coupled?

Understanding
Communication Patterns in
Microservices Architectures

@berndruecker

Let‘s talk about food

How does ordering Pizza work?

Pizza
Place

You

Phone Call
Synchronous blocking communication
Feedback loop (ack, confirmation or rejection)
Temporal coupling (e.g. busy, not answering)

Pizza
Place

You

Email

Asynchronous non-blocking communication
No temporal coupling

Pizza
Place

You

A feedback loop might make sense
(ack, confirmation or rejection)

Email

Confirmation Email

@berndruecker

Feedback loop != result

Pizza
Place

You

Email

Confirmation Email

Pizza Delivery

Feedback (ACK, confirmation, rejection)

Result

@berndruecker

Only the first communication step is synchronous / blocking

Pizza
Place

You

PUT /order

HTTP 200

Pizza Delivery

The task of
Pizza making is
long running

@berndruecker

Synchronous blocking behavior for the result?

Bad user experience
Does not scale well

@berndruecker

Scalable Coffee Making
https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Photo by John Ingle

@berndruecker

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/

Long running

Long running

Long running basically means waiting

When do services want to wait? Some business reasons…

Human work Waiting for response

Let some time pass

Why is waiting a pain?

Persistent state How to solve the technical challenges without adding accidential
complexity?

Monitoring &
Operations

Visibility

Versioning
Scheduling &

Timeouts

Domain Logic
Scalability &
Resilience

Credit Card
Handling

Payment
RESTOrder

Fulfillment

REST

DBPaymentId Amount Status

1 100 $ Collected

2 125 $ Open

Reporting of
overdue payments

{script}

Fixing open
payments

Scheduler to
process open
payments

Dang it – we
need a date!

Warning:
Contains Opinion

bernd.ruecker@camunda.com
@berndruecker
http://berndruecker.io/

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

http://berndruecker.io/

Workflow Engine aka Process Engine aka Orchestration Engine

Building a pizza ordering app

PUT /order

HTTP 200:
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery
System

@berndruecker

Command vs. event-based communication

Pizza
Place

You

I order this pizza

OK – got it

Command = Intent
Cannot be ignored
Independant of communication channel

Pizza
Place

You

„Hey – I am hungry!“

Event = Fact
Sender can't control what happens

@berndruecker

Definitions

Event = Something happened in the past. It is a fact.
 Sender does not know who picks up the event.

Command = Sender wants s.th. to happen. It has an intent.
 Recipient does not know who issued the command.

@berndruecker

Some prefer request over cOmmand

Communication Options – Quick Summary

Communication
Style

Synchronous
Blocking

Asynchronous
Non-Blocking

Collaboration
Style

Command-Driven Event-Driven

Example REST
Messaging
(Queues)

Messaging
(Topics)

Feedback Loop
HTTP

Response
Response
Message

-

Pizza Ordering via Phone Call E-Mail Twitter

This is not the
same!

@berndruecker

Events vs. Commands

„Pizza Salmon
is ready!“

I baked this pizza for Andrea.
Please package it immediately and

deliver it while it‘s hot!

@berndruecker

Orchestrator

Command

@berndruecker

Example: Build a pizza ordering app using events

PUT /order

HTTP 200:
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery
System

Hey – somebody
ordered

Hey – Pizza is
readyI have a Pizza

for you

@berndruecker

PUT /order

HTTP 200:
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery
System

Hey – somebody
ordered

Hey – Pizza is
readyI have a Pizza

for you

How do I make sure the
Pizza is not forgotten?

Example: Build a pizza ordering app using events
@berndruecker

Example: Build a pizza ordering app via orchestration

PUT /order

HTTP 200:
„Got your order. Should
be delievered in roughly

41 minutes.“

Pizza Delivery
System

But how to implement
long-running things?

@berndruecker

A process for the Pizza ordering system
@berndruecker

You can still work with events
Pizza xy was picked

up by driver z
Driver z handed over

Pizza successfully

@berndruecker

Advantages
@berndruecker

Visibility: What‘s the
current status?

Visibility: History and
audit trail

Time-out handling
/ escalation

Long running: Waiting
for events to happen

Your code to provide a REST endpoint

Developer-friendly
workflow engines

@PutMapping("/pizza-order")
public ResponseEntity<PizzaOrderResponse pizzaOrderReceived(...) {
HashMap<String, Object> variables = new HashMap<String, Object>();
variables.put("orderId", orderId);

ProcessInstanceEvent processInstance = camunda.newCreateInstanceCommand()
.bpmnProcessId("pizza-order")
.latestVersion()
.variables(variables)
.send().join();

return ResponseEntity.status(HttpStatus.ACCEPTED).build();
}

@berndruecker

Orchestration vs. Choreography
@berndruecker

Definition

Orchestration = command-driven communication

Choreography = event-driven communication

@berndruecker

Let‘s switch examples: Order fulfillment

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order
placed

Payment
received

Goods
shipped

@berndruecker

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Notification

Checkout

Payment

Inventory

Shipment

@berndruecker

Pinball Machine Architecture

@berndruecker

https://twitter.com/berndruecker/

What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pb19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Order
Fulfillment

Using orchestration and choreography

Checkout

Payment

Inventory

ShipmentPayment
received

Order
placed

Retrieve
payment

@berndruecker

This is
choreography

This is
orchestration

Order
Fulfillment

Collaboration style is independant of communication style

Checkout

Payment

Inventory

ShipmentPayment
received

Order
placed

Retrieve
payment

@berndruecker

Choreography

Orchestration

Asynchronous
non-blocking

Asynchronous
non-blocking

Synchronous
blocking

Order
Fulfillment

Checkout

Payment

Inventory

Shipment

@berndruecker

Now it is easy to change the process flow

@berndruecker

Challenge:
Command vs. Event

Event

Command

vs

?

Event Command Query

Message Record Event

Fact,
happened in the past,
immutable

Intend,
Want s.th. to happen,
The intention itself is a fact

?

Event Command Query

Message Record Event

Commands in disguise

The Customer Needs To Be
Sent A Message To Confirm

Address Change
Event

Send
Message

Wording of
Sender

Wording of
recipient

Checkout Order Payment

Event-driven:
Decision to couple is on the receiving side

Command-driven
Decision to couple is on the sending side

Direction of dependency

Retrieve
Payment

Order
placed

Payment
received

Direction of dependency

Customer onboarding

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

https://github.com/berndruecker/customer-onboarding-camunda-8-springboot

Sam Newman: Building Microservices

@berndruecker

Mix orchestration and choreography

Orchestration

Orchestration

Orchestration

Choreography

@berndruecker

Want to learn more about choreography vs. orchestration?

https://processautomationbook.com/

http://berndruecker.io

https://processautomationbook.com/
http://berndruecker.io/

An orchestrator?

Processes are domain logic and live inside service boundaries
@berndruecker

Orchestration is not centralized – PaaS operations might be

Microservice A

Orchestration
Engine

Microservice B Microservice C

Orchestration
Engine

Ideally SaaS
(probably self-managed)

Every microservice (process solution) owns its process model, glue code, and any additional artifacts

Orchestration
Engine

Example: Self-service control plane

Some code?

https://github.com/berndruecker/flowing-retail/tree/master/kafka

@berndruecker

https://github.com/berndruecker/flowing-retail/tree/master/kafka

Let’s talk about long running…

Example

Order
Fulfillment

Payment
Credit
Card

Retrieve
Payment

@berndruecker

Example

Order
Fulfillment

Payment
Credit
Card

Retrieve
Payment

Rejected

@berndruecker

Example

Order
Fulfillment

Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker

Payment
failed

Who is responsible?

Order
Fulfillment

Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker

Payment
failed

Long running services

Order
Fulfillment

Payment
Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker

Long running services

Order
Fulfillment

Payment
Credit
Card

@berndruecker

Long Running Services Allow More Flexible Changes

@berndruecker

Long Running Services Allow More Flexible Changes

@berndruecker

Being able to implement
long running services

makes it easy to distribute
responsibilities correctly

@berndruecker

Being able to implement
long running services

makes it easy to embrace
async/non-blocking

@berndruecker

When do services need to wait? Some technical reasons…

Asynchronous communication

Wait for
responses

Wait for
availability

Especially failure scenarios

Unavailability of peers

Photo by Tookapic, available under Creative Commons CC0 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/

„There was an error
while sending your

boarding pass“

Check-in

Web-UI

Me

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Failure will happen.
Accept it!

But keep it local!
Be resilient.

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Stateful
Retry

We are having some technical
difficulties and cannot present you

your boarding pass right away.

But we do actively retry ourselves, so
lean back, relax and we will send it

on time.

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Stateful
Retry

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Stateful
Retry

Possible situation – much better!

The failure
 never leaves
 this scope!

„But the customer wants a synchronous response!“

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

„Eh – no!“

Synchronous communication

Todd Montgomery and Martin Thompson
in “How did we end up here” at GOTO Chicago 2015

Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson
in “How did we end up here” at GOTO Chicago 2015

Messaging?
@berndruecker

Using messaging

Credit
Card

Request

Dead letter queue
(DLQ)

Using messaging

Credit
Card

Request

Dead letter queue
(DLQ)

Patterns To Survive Remote Communication
Service

Consumer
Pattern/Concept Use With

Service
Provider

X Service Discovery Sync (X)

X Circuit Breaker Sync

X Bulkhead Sync

(X) Load Balancing Sync X

X Retry Sync / Async

X Idempotency Sync / Async X

De-duplication Async X

(X) Back Pressure & Rate Limiting Sync / (Async) X

X Await feedback Async

X Sagas Sync / Async (X) …

@berndruecker

Circuit
Breaker

Photo by CITYEDV, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/schutzschalter-fi-schalter-1167327/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Circuit Breaker

WebshopYou

PUT /order Address
Check

Payment

from https://martinfowler.com/bliki/CircuitBreaker.html

@berndruecker

https://martinfowler.com/bliki/CircuitBreaker.html

Circuit Breaker

WebshopYou

PUT /order Address
Check

Payment

@CircuitBreaker(name = BACKEND, fallbackMethod =
"fallback")
public boolean addressValid(Address a) {

return httpEndpoint.GET(...);
}

private boolean fallback(Address a) {
return true;

}

e.g. Resilience4J:

resilience4j.circuitbreaker:
 instances:
 BACKEND:
 registerHealthIndicator: true
 slidingWindowSize: 100
 permittedNumberOfCallsInHalfOpenState: 3
 minimumNumberOfCalls: 20
 waitDurationInOpenState: 50s
 failureRateThreshold: 50

@berndruecker

Patterns To Survive Remote Communication
Service

Consumer
Pattern/Concept Use With

Service
Provider

X Service Discovery Sync (X)

X Circuit Breaker Sync

X Bulkhead Sync

(X) Load Balancing Sync X

X Retry Sync / Async

X Idempotency Sync / Async X

De-duplication Async X

(X) Back Pressure & Rate Limiting Sync / (Async) X

X Await feedback Async

X Sagas Sync / Async (X) …

@berndruecker

Coupling

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but
depends

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but
depends

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but
depends

Domain Coupling Business capabilities
require multiple services

Order fulfillment requires
payment, inventory and
shipping

Unavoidable unless you
change business
requirements or service
boundaries

@berndruecker

Types of Coupling

Type of coupling Description Example Recommendation

Implementation Coupling Service knows internals of
other services

Joined database Avoid

Temporal Coupling Service depends on
availability of other
services

Synchronous blocking
communication

Reduce or manage

Deployment Coupling Multiple services can only
be deployed together

Release train Typically avoid, but
depends

Domain Coupling Business capabilities
require multiple services

Order fulfillment requires
payment, inventory and
shipping

Unavoidable unless you
change business
requirements or service
boundaries

@berndruecker

Type of coupling Recommendation

Implementation Coupling Avoid

Temporal Coupling Reduce or manage

Deployment Coupling Typically avoid, but
depends

Domain Coupling Unavoidable unless you
change business
requirements or service
boundaries

The communication style can reduce temporal
coupling

Some people say that event-driven systems decouple
better. But in reality, it just turns the direction of
the dependency around.
The collaboration style does not decouple!

Summary

• Know
• communication styles (sync/async)
• collaboration styles (command/event)

• You can get rid of temporal coupling with asynchronous communication
• Make sure you or your team can handle it
• You will need long running capabilities (you might need it anyway)
• Synchronous communication + correct patterns might also be OK

• Domain coupling does not go away!
• Design boundaries to limit coupling (high cohesion within boundaries)

• Long running capabilities help to distribute responsibilities correctly

@berndruecker

Want To Know More?

https://berndruecker.io/ | https://camunda.com/

https://berndruecker.io/
https://camunda.com/

Thank you!

@berndruecker

bernd.ruecker@camunda.com
@berndruecker

https://berndruecker.io

https://blog.bernd-ruecker.com/

https://github.com/berndruecker

Contact:

Slides:

Blog:

Code:

mailto:bernd.ruecker@camunda.com
https://berndruecker.io/
https://blog.bernd-ruecker.com/
https://github.com/berndruecker

	Standardabschnitt
	Slide 1: Loosely or Lousily Coupled? Understanding Communication Patterns in Microservices Architectures

	tart
	Slide 2: Let‘s talk about food
	Slide 3: How does ordering Pizza work?
	Slide 4: Feedback loop != result
	Slide 5: Only the first communication step is synchronous / blocking
	Slide 7: Synchronous blocking behavior for the result?
	Slide 8: Scalable Coffee Making
	Slide 9: Long running
	Slide 10: Long running
	Slide 11: Long running basically means waiting
	Slide 12: When do services want to wait? Some business reasons…
	Slide 13: Why is waiting a pain?
	Slide 14
	Slide 15: Warning: Contains Opinion
	Slide 16: Bernd Ruecker Co-founder and Chief Technologist of Camunda
	Slide 17
	Slide 18: Building a pizza ordering app
	Slide 20: Command vs. event-based communication
	Slide 21: Definitions
	Slide 22: Communication Options – Quick Summary
	Slide 23: Events vs. Commands
	Slide 24
	Slide 25: Example: Build a pizza ordering app using events
	Slide 26: Example: Build a pizza ordering app using events
	Slide 29: Example: Build a pizza ordering app via orchestration
	Slide 30: A process for the Pizza ordering system
	Slide 31: You can still work with events
	Slide 32: Advantages
	Slide 33

	Orchestration vs. Choreography
	Slide 34: Orchestration vs. Choreography
	Slide 35: Definition
	Slide 36: Let‘s switch examples: Order fulfillment
	Slide 37: Event chains
	Slide 38: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 39: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 40: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 41: Peer-to-peer event chains
	Slide 42: Peer-to-peer event chains
	Slide 43
	Slide 44: Pinball Machine Architecture
	Slide 45: What we wanted
	Slide 46: Using orchestration and choreography
	Slide 47: Collaboration style is independant of communication style
	Slide 48
	Slide 49: Now it is easy to change the process flow
	Slide 50: Challenge: Command vs. Event
	Slide 51
	Slide 52
	Slide 53: Commands in disguise
	Slide 54: Direction of dependency
	Slide 55: Customer onboarding
	Slide 56
	Slide 57: Mix orchestration and choreography
	Slide 58: Want to learn more about choreography vs. orchestration?
	Slide 60: An orchestrator?
	Slide 61: Processes are domain logic and live inside service boundaries
	Slide 62: Orchestration is not centralized – PaaS operations might be
	Slide 63: Example: Self-service control plane
	Slide 66: Some code?

	Long Running
	Slide 70: Let’s talk about long running…
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Who is responsible?
	Slide 75: Long running services
	Slide 76: Long running services
	Slide 77: Long Running Services Allow More Flexible Changes
	Slide 78: Long Running Services Allow More Flexible Changes
	Slide 79: Being able to implement long running services makes it easy to distribute responsibilities correctly
	Slide 80: Being able to implement long running services makes it easy to embrace async/non-blocking
	Slide 81: When do services need to wait? Some technical reasons…
	Slide 83
	Slide 84
	Slide 85: Current situation
	Slide 86: Current situation
	Slide 87: Current situation
	Slide 88
	Slide 89: Current situation – the bad part
	Slide 90: Current situation – the bad part
	Slide 91: Current situation – the bad part
	Slide 92
	Slide 93
	Slide 94: Possible situation – much better!
	Slide 95: Possible situation – much better!
	Slide 96: Possible situation – much better!
	Slide 97: „But the customer wants a synchronous response!“

	Sync/Async hands-on problems
	Slide 98: Synchronous communication
	Slide 99: Synchronous communication is the crystal meth of distributed programming
	Slide 100: Messaging?
	Slide 101: Using messaging
	Slide 102: Using messaging
	Slide 103: Patterns To Survive Remote Communication
	Slide 104
	Slide 105: Circuit Breaker
	Slide 106: Circuit Breaker
	Slide 111: Patterns To Survive Remote Communication
	Slide 113: Coupling
	Slide 114: Types of Coupling
	Slide 115: Types of Coupling
	Slide 116: Types of Coupling
	Slide 117: Types of Coupling
	Slide 118: Types of Coupling
	Slide 119: Types of Coupling
	Slide 120: Types of Coupling
	Slide 121: Types of Coupling
	Slide 122
	Slide 125: Summary
	Slide 127: Want To Know More?
	Slide 128
	Slide 129: bernd.ruecker@camunda.com @berndruecker https://berndruecker.io https://blog.bernd-ruecker.com/ https://github.com/berndruecker

