
How
Process Orchestration
Increases Agility
Without Harming
Architecture

@berndruecker

Legacy Systems

Point to point

integrations

(aka Spaghetti)

Manual work

Ad-hoc problem

solving

Please open
a bank account

for me

Wow, that
was…

…slow

@berndruecker

@berndruecker

GARTNER®, Emerging Tech Impact Radar: Hyperautomation, 28 March 2023. GARTNER
is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S.
and internationally and is used herein with permission. All rights reserved

■

■

■

■

■

■

Source: Talk at Camunda Con 2020 (https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513)

@berndruecker

https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513

Source: Talk at Camunda Con 2020 (https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513)

@berndruecker

“Spaghetti bot
automation”

https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513

@berndruecker

@berndruecker

Using a workflow engine

Workflow Engine

Scheduler

Durable State

Glue Code Whatever you
need…

Workflow Definition

Workflow Engine:

Is stateful

Can wait
Can retry
Can escalate
Can compensate

Provides visibility

Example

Warning:
Contains Opinion

@berndruecker

mail@berndruecker.io
@berndruecker
http://berndruecker.io/

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

http://berndruecker.io/

Do you have to program
all integration
logic?

20

@berndruecker

Criticality,
value,

complexity…

Use Cases

@berndruecker

https://www.forrester.com/blogs/how-shell-led-a-citizen-developer-movement/

Criticality,
value,

complexity…

Use Cases

@berndruecker

@berndruecker

@OutboundConnector(
type = "io.camunda:http-json:1", inputVariables = {"method", ...},

)
public class HttpJsonFunction implements OutboundConnectorFunction {

public Object execute(final OutboundConnectorContext context) throws Exception {
final var json =;
final var request = createRequest(context);
return httpService.executeConnectorRequest(request);

}
} {

"name": "REST Connector",
"properties": [
{

"type": "Hidden",
"value": "io.camunda:http-json:1",
"binding": {

"type": "zeebe:taskDefinition:type"
}

},
{
"id": "method",
"label": "REST Method",
"group": "endpoint",
"type": "Dropdown",
"value": "get",
"choices": [

{

https://github.com/camunda/connectors-bundle/tree/main/connectors/http-json

https://github.com/camunda/connectors-bundle/tree/main/connectors/http-json

@berndruecker

Runs anywhere

Multiple connector runtime options,
including SaaS, self-managed, co-
located, and local installations

@berndruecker

or

enable

@berndruecker

Criticality,
value,

complexity…

Use Cases

https://page.camunda.com/wb-zeebe-performance-engine

Connectors Modeling
Experience

Low-code
Forms

Human Task
Orchestration

CAMUNDA

Low-code Pro-code

Process Orchestration

Kopfhörer

The Forrester Wave Highest possible scores for the following criteria:

End-to-end orchestration

Data-driven automation

Vision

Innovation

Adoption

Pricing flexibility and transparency

Criticality,
value,

complexity…

Use Cases

@berndruecker

Let’s have a look at red use cases,
solved with

software engineering methods

Recently in software engineering…
@berndruecker

Recently in software engineering…

Microservices,
Serverless, …

Cloud, SaaS, …

Agile, DevOps, …

Domain Driven Design
(DDD)

Product mindset

Team topologies

@berndruecker

Building smaller components…

Checkout

Payment

Inventory

Shipment

@berndruecker

…with an ecosystem of services and components

Checkout

Payment

Inventory

Shipment

Bank
Transfer

PayPal

Credit
Card

…

DHL

…

Shipcloud

@berndruecker

Photo by born1945, available under Creative Commons BY 2.0 license.

@berndruecker

https://www.flickr.com/photos/12567713@N00/310639290
https://creativecommons.org/licenses/by/2.0/

There is trouble in software engineering land!

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

@berndruecker

Missing out on
(a healthy level of)

centralization

Not thinking
beyond Microservices

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

A wrong understanding of
decoupling and the

resulting event-driven
chaos

There is trouble in software engineering land!
@berndruecker

Missing out on
(a healthy level of)

centralization

Not thinking
beyond Microservices

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

A wrong understanding of
decoupling and the

resulting event-driven
chaos

There is trouble in software engineering land!
@berndruecker

Choreography is great!

Photo by Lijian Zhang, under Creative Commons SA 2.0 License

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/

What we wanted

Photo by Lijian Zhang, under Creative Commons SA 2.0 License and Wikimedia Commons / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Order
Placed

Payment
Received

Goods
Fetched

Notification

Event-driven
@berndruecker

Checkout

Payment

Inventory

Shipment

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Notification

Checkout

Payment

Inventory

Shipment

@berndruecker

Pinball Machine Architecture
„What the hell just happened?“

@berndruecker

https://twitter.com/berndruecker/

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order
placed

Payment
received

Goods
shipped

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

Order
Fulfillment

Extract the domain logic around order fulfillment

Checkout

Payment

Inventory

ShipmentPayment
received

Order
placed

Retrieve
payment

@berndruecker

Order
Fulfillment

Checkout

Payment

Inventory

Shipment

@berndruecker

This orchestration
requires state

Now it is easy to change the orchestration logic

@berndruecker

Processes are domain logic and live inside service
boundaries

@berndruecker

Processes are domain logic and live inside service
boundaries

@berndruecker

Orchestration
does not

need to be
central

More tomorrow if you are interested

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

Missing out on
(a healthy level of)

centralization

Not thinking
beyond Microservices

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

A wrong understanding of
decoupling and the

resulting event-driven
chaos

There is trouble in software engineering land!

of IT decision makers say

processes spanning multiple

systems is a reason for process

automation complexity

(up from 41% in 2023)

of business and IT decision-makers

estimate that 26 or more systems are

involved in their organization’s

automation implementation

Is everything a Microservice?

94

RPA & Bots

SaaS Services

Front-end
applications

Humans

Legacy Systems

@berndruecker

Processes can still live in microservices
@berndruecker

Missing out on
(a healthy level of)

centralization

Not thinking
beyond Microservices

Confusion around
communication and

collaboration styles
(REST, Messaging, Events)

A wrong understanding of
decoupling and the

resulting event-driven
chaos

There is trouble in software engineering land!

Photo by born1945, available under Creative Commons BY 2.0 license.

https://www.flickr.com/photos/12567713@N00/310639290
https://creativecommons.org/licenses/by/2.0/

The flipside…

Golden Paths

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

“We found that
rumour-driven development
simply wasn’t scalable”

@berndruecker

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

https://backstage.io/ (OSS, Made with at Spotify) @berndruecker

https://backstage.io/
https://spotify.github.io/

@berndruecker

Center of
Excellence

Domain

Gestern in
München

Business Unit

or Domain

Business Unit

or Domain

Business Unit

or Domain

Process Automation

Center or Excellence

Solution

Delivery

Solution

Delivery
Solution

Delivery

Solution

Delivery

Solution

Delivery

enable Provide custom

connectors

Provide process

orcherstration

as a service
…

Photo by born1945, available under Creative Commons BY 2.0 license.

Domain A

Domain B

https://www.flickr.com/photos/12567713@N00/310639290
https://creativecommons.org/licenses/by/2.0/

Process Orchestration is an essential building brick for automation
Process automation = process orchestration + task automation
Red, yellow, and green processes have different requirements
Include more roles in solution creation
Low code and developer friendlyness are not mutually exclusive
Process Orchestration can be part of software engineering, but
Don‘t fall in the evnt-driven chaos trap
Think beyond microservices

Establish a healthy level of centralization (Platform teams)

@berndruecker

Want To Know More?

https://berndruecker.io/

https://berndruecker.io/

Thank you!

@berndruecker

bernd.ruecker@camunda.com
@berndruecker

https://berndruecker.io

https://blog.bernd-ruecker.com/

https://github.com/berndruecker

Contact:

Slides:

Blog:

Code:

mailto:bernd.ruecker@camunda.com
https://berndruecker.io/
https://blog.bernd-ruecker.com/
https://github.com/berndruecker

	Default Section
	Slide 1: How Process Orchestration Increases Agility Without Harming Architecture

	Procss Orchestration
	Slide 2: The common reality
	Slide 3: Processes span across Silos
	Slide 4
	Slide 5: The customer doesn’t care
	Slide 6
	Slide 7: Process orchestration
	Slide 8
	Slide 9
	Slide 10: Gartner - Process Orchestration
	Slide 11: Why Process Orchestration Maturity matters
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Using a workflow engine
	Slide 17
	Slide 18: Warning: Contains Opinion
	Slide 19: Bernd Ruecker Co-founder and Chief Technologist of Camunda
	Slide 20: Do you have to program all integration logic?
	Slide 21: Out-of-the-box Connectors
	Slide 22: Low-code?
	Slide 23: Process != process
	Slide 24: Categorize your use case
	Slide 25
	Slide 28: What’s a Connector?
	Slide 29
	Slide 30: Solution architecture example
	Slide 31: Solution architecture example
	Slide 32: Protocol Connectors
	Slide 33: Protocol > Generic System Connector
	Slide 34: Protocol > Generic > Specific Connectors
	Slide 35: Enabling more roles to participate
	Slide 36: Unlocking more use cases
	Slide 37: But also unlock more red use cases
	Slide 38: Low-code as an accelerator
	Slide 39: Camunda Recognized as A Strong Performer
	Slide 41

	Where we stand in Software Engineering
	Slide 42: Recently in software engineering…
	Slide 43: Recently in software engineering…
	Slide 44: Building smaller components…
	Slide 45: …with an ecosystem of services and components
	Slide 47: Autonomy to speed up development

	What's not going well
	Slide 50: There is trouble in software engineering land!
	Slide 51: There is trouble in software engineering land!

	Decoupling & Event-Chaos
	Slide 52: There is trouble in software engineering land!
	Slide 53: Choreography is great!
	Slide 54: What we wanted
	Slide 55: Event-driven
	Slide 56: Peer-to-peer event chains
	Slide 57: Peer-to-peer event chains
	Slide 58
	Slide 59: Pinball Machine Architecture
	Slide 62: Peer-to-peer event chains
	Slide 63: Peer-to-peer event chains
	Slide 64: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 65: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 66: The danger is that it's very easy to make nicely decoupled systems with event notification, without realizing that you're losing sight of that larger-scale flow, and thus set yourself up for trouble in future years.
	Slide 67: Extract the domain logic around order fulfillment
	Slide 69
	Slide 75: Now it is easy to change the orchestration logic
	Slide 76: Processes are domain logic and live inside service boundaries
	Slide 77: Processes are domain logic and live inside service boundaries
	Slide 89: More tomorrow if you are interested

	Thinking beyond microservices
	Slide 90: There is trouble in software engineering land!
	Slide 91: State of Process Orchestration Report 2024
	Slide 92: Processes are getting more complex
	Slide 93
	Slide 94: Is everything a Microservice?
	Slide 95
	Slide 96: Processes can still live in microservices

	Healthy centralization
	Slide 99: There is trouble in software engineering land!
	Slide 100: Autonomy!
	Slide 101: The flipside…
	Slide 103: Golden Paths
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Gestern in München
	Slide 108
	Slide 109: Scaling adoption
	Slide 110: Centralization vs. autonomy?

	Closing
	Slide 112: # Process Orchestration is an essential building brick for automation # Process automation = process orchestration + task automation # Red, yellow, and green processes have different requirements # Include more roles in solution creation # Low
	Slide 113: Want To Know More?
	Slide 114
	Slide 115
	Slide 116: bernd.ruecker@camunda.com @berndruecker https://berndruecker.io https://blog.bernd-ruecker.com/ https://github.com/berndruecker

