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Source: Talk at Camunda Con 2020 (https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513)

@berndruecker

https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513


Source: Talk at Camunda Con 2020 (https://blog.bernd-ruecker.com/process-automation-in-harmony-with-rpa-720effdb0513)

@berndruecker

“Spaghetti bot 
automation”
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Using a workflow engine

Workflow Engine

Scheduler

Durable State

Glue Code Whatever you 
need…

Workflow Definition

Workflow Engine:

Is stateful 

Can wait
Can retry
Can escalate
Can compensate

Provides visibility



Example



Warning:
Contains Opinion
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Do you have to program
all integration 
logic?
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Criticality,
value,

complexity…

Use Cases
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https://www.forrester.com/blogs/how-shell-led-a-citizen-developer-movement/
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@OutboundConnector(
type = "io.camunda:http-json:1", inputVariables = {"method", ...},

)
public class HttpJsonFunction implements OutboundConnectorFunction {

public Object execute(final OutboundConnectorContext context) throws Exception {
final var json =;
final var request = createRequest(context);
return httpService.executeConnectorRequest(request);

}
} {

"name": "REST Connector",
"properties": [
{

"type": "Hidden",
"value": "io.camunda:http-json:1",
"binding": {

"type": "zeebe:taskDefinition:type"
}

},
{
"id": "method",
"label": "REST Method",
"group": "endpoint",
"type": "Dropdown",
"value": "get",
"choices": [

{

https://github.com/camunda/connectors-bundle/tree/main/connectors/http-json

https://github.com/camunda/connectors-bundle/tree/main/connectors/http-json
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Runs anywhere

Multiple connector runtime options, 
including SaaS, self-managed, co-
located, and local installations
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or 

enable
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Criticality,
value,

complexity…

Use Cases



https://page.camunda.com/wb-zeebe-performance-engine
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The Forrester Wave Highest possible scores for the following criteria:

End-to-end orchestration

Data-driven automation

Vision

Innovation

Adoption

Pricing flexibility and transparency



Criticality,
value,

complexity…

Use Cases
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Let’s have a look at red use cases, 
solved with 

software engineering methods



Recently in software engineering…
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Recently in software engineering…

Microservices, 
Serverless, …

Cloud, SaaS, …

Agile, DevOps, …

Domain Driven Design 
(DDD)

Product mindset

Team topologies
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Building smaller components…

Checkout

Payment

Inventory

Shipment
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…with an ecosystem of services and components

Checkout

Payment

Inventory

Shipment

Bank 
Transfer

PayPal

Credit
Card

…

DHL

…

Shipcloud
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Photo by born1945, available under Creative Commons BY 2.0 license.
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There is trouble in software engineering land!

Confusion around 
communication and 

collaboration styles
(REST, Messaging, Events)
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Missing out on 
(a healthy level of)

centralization

Not thinking 
beyond Microservices

Confusion around 
communication and 

collaboration styles
(REST, Messaging, Events)

A wrong understanding of 
decoupling and the 

resulting event-driven 
chaos

There is trouble in software engineering land!
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Choreography is great!

Photo by Lijian Zhang, under Creative Commons SA 2.0 License

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/


What we wanted

Photo by Lijian Zhang, under Creative Commons SA 2.0 License and Wikimedia Commons / CC BY-SA 4.0
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Order
Placed

Payment
Received

Goods
Fetched

Notification

Event-driven
@berndruecker
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods 
shipped

Goods 
fetched
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received
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Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado


Notification

Checkout

Payment

Inventory

Shipment
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Pinball Machine Architecture
„What the hell just happened?“
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods 
shipped

Goods 
fetched

Fetch the goods 
before the 
payment
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods 
before the 
payment

Goods 
fetched

Order 
placed

Payment 
received

Goods 
shipped
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The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html 

https://martinfowler.com/articles/201701-event-driven.html
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Order
Fulfillment

Extract the domain logic around order fulfillment

Checkout

Payment

Inventory

ShipmentPayment
received

Order 
placed

Retrieve
payment
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Order
Fulfillment

Checkout

Payment

Inventory

Shipment
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This orchestration 
requires state



Now it is easy to change the orchestration logic
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Processes are domain logic and live inside service
boundaries
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Processes are domain logic and live inside service
boundaries
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Orchestration 
does not

need to be 
central



More tomorrow if you are interested

Confusion around 
communication and 

collaboration styles
(REST, Messaging, Events)
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beyond Microservices
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There is trouble in software engineering land!





of IT decision makers say 

processes spanning multiple 

systems is a reason for process 

automation complexity

(up from 41% in 2023)



of business and IT decision-makers 

estimate that 26 or more systems are 

involved in their organization’s 

automation implementation



Is everything a Microservice?

94

RPA & Bots

SaaS Services

Front-end 
applications

Humans

Legacy Systems



@berndruecker



Processes can still live in microservices
@berndruecker
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The flipside…



Golden Paths

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

“We found that
rumour-driven development
simply wasn’t scalable”

@berndruecker

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/


https://backstage.io/ (OSS, Made with at Spotify) @berndruecker

https://backstage.io/
https://spotify.github.io/
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Center of 
Excellence

Domain



Gestern in 
München





Business Unit

or Domain

Business Unit

or Domain

Business Unit

or Domain

Process Automation

Center or Excellence

Solution 

Delivery

Solution 

Delivery
Solution 

Delivery

Solution 

Delivery

Solution 

Delivery

enable Provide custom 

connectors

Provide process 

orcherstration

as a service
…



Photo by born1945, available under Creative Commons BY 2.0 license.

Domain A

Domain B

https://www.flickr.com/photos/12567713@N00/310639290
https://creativecommons.org/licenses/by/2.0/


# Process Orchestration is an essential building brick for automation
# Process automation = process orchestration + task automation
# Red, yellow, and green processes have different requirements
# Include more roles in solution creation
# Low code and developer friendlyness are not mutually exclusive
# Process Orchestration can be part of software engineering, but
# Don‘t fall in the evnt-driven chaos trap
# Think beyond microservices

# Establish a healthy level of centralization (Platform teams)
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Want To Know More?

https://berndruecker.io/

https://berndruecker.io/




Thank you!
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bernd.ruecker@camunda.com
@berndruecker

https://berndruecker.io

https://blog.bernd-ruecker.com/

https://github.com/berndruecker
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