
Automating Processes 
in Modern 
Hipster Architectures

@berndruecker



Example

@berndruecker



Example

Payment

Seat
ReservationBooking

Ticket
Generation



Example

@berndruecker

sync



REST?

Payment

Seat
ReservationBooking

Ticket
Generation

REST

REST

REST

REST



Weaknesses: Latency creep

Payment

Seat
ReservationBooking

Ticket
Generation

REST

300 ms
1150 + x ms

600 ms

250 ms



Weaknesses: Availabiliy erosion

Payment

Seat
ReservationBooking

Ticket
Generation

REST
99 % uptime

99 % uptime

99 % uptime

96 % uptime



And what about consistency?

Payment

Seat
ReservationBooking

Ticket
Generation



What‘s hipster?

Event-Driven

Reactive

Distributed Systems

Microservices

Agile

Streaming

Cloud-Native

Eventual Consistency

Kubernetes

Serverless



Event Bus

Event-Driven Choreography

Payment

Seat
Reservation

Ticket
Generation

Ticket
booked

Seat 
reserved

Payment
received

Ticket 
generated



Event Bus

Event-Driven Choreography

Payment

Seat
Reservation

Ticket
Generation

Ticket
booked

Seat 
reserved

Payment
received

Ticket 
generated

This is super 
flexible and 
de-coupled



Event Bus

Event-Driven Choreography

Payment

Seat
Reservation

Ticket
Generation

Ticket
booked

Seat 
reserved

Payment
received

Ticket 
generated

We now need
to reserve seats before
collecting payment!



What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and P..19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en


The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


How-to monitor
event-driven processes?

https://camunda.com/learn/webinars/
microservices-landscape-workflow-automation/

https://camunda.com/learn/webinars/microservices-landscape-workflow-automation/
https://camunda.com/learn/webinars/microservices-landscape-workflow-automation/


Orchestration

Payment

Seat
ReservationBooking

Ticket
Generation

This component orchestrates
the others

coordinates



Orchestration ≠ Synchronous Communication

Payment

Seat
ReservationBooking

Ticket
Generation

Kafka

AMQP

FaaS

REST



A workflow engine can help

Payment

Seat
ReservationBooking

Ticket
Generation

REST



A workflow engine can help

Payment

Seat
ReservationBooking

Ticket
Generation

REST
A workflow engine

Keeps persistent state

Can wait
Can retry
Can escalate
Can compensate
…



Warning:
Contains Opinion



Berlin, Germany

mail@berndruecker.io
@berndruecker

Bernd Ruecker
Co-founder and 
Chief Technologist of
Camunda

mailto:mail@berndruecker.io


Demo



Architecture

Payment

Seat
Reservation

Ticket
Generation

REST

Booking
Java Spring Boot App

Camunda Cloud 
Client

Camunda Cloud 
Workflow Engine

AMQP

REST

Workflow engine
subscription

FakeServices
NodeJs App

https://github.com/berndruecker/ticket-booking-camunda-cloud

https://github.com/berndruecker/ticket-booking-camunda-cloud


Camunda Cloud is based on Zeebe (OSS workflow engine)

http://zeebe.io/

http://zeebe.io/


But…

@berndruecker

sync



Can your company
leverage your
hipster architecture?

S
h

u
tte

rsto
ck

You need to
change business
processes and
customer
experience!



@berndruecker

happy 
case

failure
case

Redesign your business process accordingly!

Or some interface
to poll for status

Sync in happy case

Async response



Summary

• Synchronous call chains have weknesses
• Event-driven choreography is not a magic cure
• Orchestration 
• Helps to avoid chaos
• Can be handled within one service (decentral)
• Does not mean synchronous communication

• To leverage a great hipster architecture you need to adjust
business processes and customer experience



Thank you!

@berndruecker



mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

