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Weaknesses: Latency creep
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Weaknesses: Availabiliy erosion
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And what about consistency?
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What‘s hipster?

Event-Driven

Reactive

Distributed Systems

Microservices

Agile

Streaming

Cloud-Native

Eventual Consistency

Kubernetes

Serverless



Event Bus
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This is super 
flexible and 
de-coupled



Event Bus
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We now need
to reserve seats before
collecting payment!



What we wanted
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The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html
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How-to monitor
event-driven processes?

https://camunda.com/learn/webinars/
microservices-landscape-workflow-automation/

https://camunda.com/learn/webinars/microservices-landscape-workflow-automation/
https://camunda.com/learn/webinars/microservices-landscape-workflow-automation/
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Orchestration ≠ Synchronous Communication
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A workflow engine can help
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A workflow engine can help
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A workflow engine

Keeps persistent state

Can wait
Can retry
Can escalate
Can compensate
…



Warning:
Contains Opinion
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Architecture
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https://github.com/berndruecker/ticket-booking-camunda-cloud
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Camunda Cloud is based on Zeebe (OSS workflow engine)

http://zeebe.io/

http://zeebe.io/


But…
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Can your company
leverage your
hipster architecture?
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You need to
change business
processes and
customer
experience!
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happy 
case

failure
case

Redesign your business process accordingly!

Or some interface
to poll for status

Sync in happy case

Async response



Summary

• Synchronous call chains have weknesses
• Event-driven choreography is not a magic cure
• Orchestration 
• Helps to avoid chaos
• Can be handled within one service (decentral)
• Does not mean synchronous communication

• To leverage a great hipster architecture you need to adjust
business processes and customer experience



Thank you!
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